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Statistical mechanics in the extended Gaussian ensemble

Ramandeep S. Johal,* Antoni Planes,† and Eduard Vives‡

Departament d’Estructura i Constituents de la Mate`ria, Facultat de Fı´sica, Universitat de Barcelona, Diagonal 647,
08028 Barcelona, Catalonia, Spain

~Received 5 August 2003; published 20 November 2003!

The extended Gaussian ensemble~EGE! is introduced as a generalization of the canonical ensemble. This
ensemble is a further extension of the Gaussian ensemble introduced by Hetherington@J. Low Temp. Phys.66,
145 ~1987!#. The statistical mechanical formalism is derived both from the analysis of the system attached to
a finite reservoir and from the maximum statistical entropy principle. The probability of each microstate
depends on two parametersb andg which allow one to fix, independently, the mean energy of the system and
the energy fluctuations, respectively. We establish the Legendre transform structure for the generalized ther-
modynamic potential and propose a stability criterion. We also compare the EGE probability distribution with
the q-exponential distribution. As an example, an application to a system with few independent spins is
presented.
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I. INTRODUCTION

The development of statistical mechanics based on
semble theory is founded on the postulate of ‘‘equala priori
probabilities,’’ which is assumed to apply to all microstat
consistent with the given macrostate of an isolated sys
@1#. The corresponding statistical ensemble is the so-ca
microcanonical ensemble. A representative system in this
semble has all ‘‘mechanical’’ variables such as energyE,
volume V, magnetizationM, etc., fixed. For convenience i
calculations, other ensembles are used which invariably s
pose the existence of a subsidiary system or reservoir in
tact with the actual system. For instance, in the canon
ensemble the walls of the system permit an exchange of
ergy with the reservoir while in the grand canonical e
semble, both energy and matter can be exchanged. In
eral, the different ensembles are constructed by allowing
or more mechanical variables to fluctuate. The exchang
each of these variables is controlled by a parameter whic
a characteristic of the reservoir. For instance, in the cas
the canonical ensemble, this parameter is precisely the
perature of the reservoir and determines the mean energ
the system. Actually, this is adequate when the reservoir
very large system that can exchange arbitrary amount
energy, without modification of its intensive properties.
practical situations, this is not always the case. Howe
very few studies have been devoted to analyze the co
quences of possible deviations from these ideal reser
properties.

In this paper, we develop the statistical mechanics o
system that can exchange energy with a finite reservoir c
acterized by two parameters:b andg. These parameters con
trol independently the mean energy of the system and
energy fluctuations, respectively. The corresponding stat
cal ensemble represents a generalization of the canonica
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semble and will be called the extended Gaussian ensem
~EGE!. A similar ensemble was already developed, in a m
restricted framework, by Hetherington@2#. The author con-
sidered that the sample system was in contact with a fi
reservoir with size dependent properties. The so-ca
Gaussian ensemble was introduced so that it is equivalen
the canonical ensemble in the limit of large systems, exc
in the energy range of a first-order transition. Interestingly
enables a smooth interpolation between the microcanon
and the canonical ensembles. Taking into account these
tures, Challa and Hetherington@3,4# showed the interest o
this ensemble for Monte Carlo simulation studies of pha
transitions. They demonstrated a significant reduction
computer time~compared to standard simulations in the c
nonical ensemble! and its adequacy for distinguishin
second-order from first-order transitions. Compared to
EGE introduced in the present paper, the main differe
arises from the fact that in the Gaussian ensemble the sa
and the reservoir are assumed to be statistically indepen
which implies the additivity of the corresponding entropie
This is not assumed in our formalism. The consequences
important and will be discussed in depth in this work.

The present formalism can be considered as an alterna
to the statistical mechanics based on nonadditive genera
entropies. Actually the study of such generalized entrop
has generated a lot of interest in the past 15 years. The
tivation for the so-called Tsallis statistical mechanics h
been to extend the standard Boltzmann-Gibbs framewor
include nonextensive systems@5#. Among different interpre-
tations, it has been suggested that Tsallis formalism co
sponds to an ensemble describing a system attached
finite reservoir@6,7#. Although a large number of papers hav
been published, the physical meaning of many related iss
is still open to discussion@8,9#. The EGE formalism that we
propose in this paper provides a clear and consistent fra
work for the statistical mechanics with a finite reservoir.

The paper is organized as follows: in Secs. II and III, t
EGE is founded from the analysis of a contact with a fin
reservoir and from the maximum statistical entropy pr
ciple, respectively. In Sec. IV, the main thermodynamic re
tions are derived. In Sec. V, we highlight the nonadditi
nature of the thermodynamic formalism. In Sec. VI, a stab
©2003 The American Physical Society13-1
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ity criterion is proposed. In Sec. VII, the equilibrium distr
butions of the EGE are compared with theq-exponential
distributions. In Sec. VIII, we present an example of app
cation to a system of independent spins. Finally, in Sec.
we summarize and conclude.

II. CONTACT WITH A FINITE RESERVOIR

Let us consider a system~that we will call the sample! in
contact with a reservoir. Let us call the energy of the sam
E1 and the energy of the reservoirE2. The sample and the
reservoir together form an isolated system so thatE5E1
1E2 is constant. Let us also defineV2(E2) as the number of
microstates of the reservoir. Following Callen@10#, the prob-
ability that the system 1 is in a certain microstate with ene
E1 is given by

p1~E1!5
V2~E2E1!

V112~E!
, ~1!

whereV112(E) is the total number of states available for t
set 112. ~Note that we do not assume thatV112 can be
factorized as a productV1V2.! Let us define the entropy o
the reservoir as

S2~E2!5 ln V2~E2!. ~2!

~Throughout the paper we choose Boltzmann’s constankB
51, so that the entropy is dimensionless.! Therefore

p1~E1!5
eS2(E2E1)

V112~E!
. ~3!

The energy of the sample will, in general, fluctuate. Let
call U its mean~equilibrium! value. We can developS2(E
2E1) around the equilibrium valueE2U as

S2~E2E1!5S2~E2U !1
dS2

dE2
U

E2U

~U2E1!

1
1

2!

d2S2

dE2
2U

E2U

~U2E1!21O~U2E1!3.

~4!

The derivatives in the right-hand side of this expression
quantities which depend only on the reservoir. We define

dS2

dE2
U

E2U

5b ~5!

and

d2S2

dE2
2 U

E2U

522g. ~6!

The standard canonical ensemble is characterized by an
nite reservoir with constantb ~independent ofE2), which
impliesg50 and there is no term beyond the first-order te
05611
-
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in Eq. ~4!. However, in the present paper, we consider a m
general finite reservoir for whichgÞ0. Thus in this EGE, the
reservoir is characterized by the pair of parametersb andg.
The thermodynamic meaning of these parameters will
clarified in the following sections. To explicitly highlight th
effects of this modification and also for the sake of simpl
ity, we assume that the cubic and higher-order terms van
Then substituting Eq.~4! in Eq. ~3! and denoting the energie
of the microstates of the sample bye i ( i 51, . . . ,M ), we
obtain

pi5
1

ZG
exp@2be i2g~e i2U !2#, ~7!

where the normalization constantZG is given by

ZG5(
i 51

M

exp@2be i2g~e i2U !2#. ~8!

The subscriptG only indicates the ‘‘Gaussian’’ form of the
probabilities. Note thatU is the mean energy and must b
obtained self-consistently from the following equation:

UZG5(
i 51

M

e iexp@2be i2g~e i2U !2#. ~9!

Equations~7!, ~8!, and ~9! reduce to the standard canonic
ensemble definitions wheng50. Therefore, it is natural to
relate the parameterg with the finite size of the reservoir.

III. MAXIMUM STATISTICAL ENTROPY PRINCIPLE

In this section, we derive the probability law of Eq.~7!
from different arguments. This leads to a better understa
ing of the parametersb and g as parameters characterizin
the ‘‘equilibrium’’ distribution of the sample. To derive th
probability distribution from the maximum statistical entrop
principle, we maximize the standard Gibbs-Boltzman
Shannon entropy given by

SG52(
i 51

M

pi ln pi , ~10!

subject to the constraints of normalization of the probabil
the given mean value of the energy, and the fixed value
the fluctuations, respectively, as

(
i 51

M

pi51, ~11!

^e i&[(
i 51

M

e i pi5U, ~12!

^~e i2U !2&[(
i 51

M

~e i2U !2pi5W. ~13!

Then the maximization procedure is done by introducing
Lagrange multipliersl, b, and g for the respective con-
straints, and maximizing the following functionalL:
3-2
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L52(
i

pi lnpi2lS (
i

pi21D 2bS (
i

e i pi2U D
2gS (

i
~e i2U !2pi2WD . ~14!

By requiring the condition

]L
]pi

50, ~15!

it is easy to see that the optimum form of the probabil
distribution is given by the expression in Eq.~7!. Thereforeb
and g, within this context, are simply Lagrange multiplie
that allow to fix, self-consistently, a mean value of the ene
U5^e i& and a specific value of the varianceW
5^(e i2U)2&.

IV. THERMODYNAMIC RELATIONS

We define a ~dimensionless! thermodynamic potentia
F~b,g! as

F~b,g!5 ln ZG . ~16!

By differentiating Eq.~8!, it can be straightforwardly ob
tained that

2S ]F

]b D
g

5U~b,g!, ~17!

2S ]F

]g D
b

5W~b,g!. ~18!

The second derivative renders

2S ]2F

]b2 D
g

52S ]U

]b D
g

5
1

W21~b,g!22g
, ~19!

which represents a generalization of the standard formula
energy fluctuations in the canonical ensemble. It is natura
define the extended heat capacity as

C[2b2S ]U

]b D
g

5
b2W

122gW
. ~20!

This equation is the same that was already derived in R
@4#. Note that, contrary to what happens in the standard
nonical ensemble, the positivity of the fluctuationsW does
not guarantee the positivity ofC.

For g→0, it is seen that relations~17! and ~19! go to the
corresponding relations for the case of canonical ensem
Also in this limit, from Eqs.~18! and ~19! we get an inter-
esting relation given by

lim
g→0

S ]F

]g D
b

5S ]2F

]b2 D
g

, ~21!
05611
y
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which resembles in form a diffusion equation.
The entropySG as given by Eq.~10! is the inverse Leg-

endre transform ofF~b,g!, and can be expressed as

SG~U,W!5bU1gW1F, ~22!

wherebySG is a function of the specified values of the co
straints, i.e.,U andW. Therefore we have the following ther
modynamic relations:

S ]SG

]U D
W

5b, ~23!

S ]SG

]W D
U

5g. ~24!

V. NONADDITIVITY

We remark that although the thermodynamics of a sys
in the EGE is well defined by the equations in the preced
section, it is not straightforward to establish a mutual eq
librium condition for two different systems that would allo
us to establish a zeroth law~or, equivalently, an intensive
temperature! @11#. This problem is due to the nonadditiv
character of the potentialF~b,g!. Let us consider two sys
tems 1 and 2 with HamiltoniansH1 andH2. By applying the
rules derived in the preceding sections independently to
two systems, one can derive the thermodynamic poten
F1(b,g) and F2(b,g) as well as the mean energie
U1(b,g) andU2(b,g). One can then try to solve the com
posite system 112 with HamiltonianH11H2. It is easy to
verify that the new potentialF112(b,g) satisfies

F112~b,g!5F1~b,g!1F2~b,g!

2 ln^eg[(H11H22U112)22(H12U1)22(H22U2)2]&,

~25!

where U112 is the mean energy of the composite syste
Note thatU112 as well as the average indicated by the a
gular brackets are computed with the probability distributi
corresponding to the composite system 112 which, in gen-
eral, cannot be written as a product of probability distrib
tions for systems 1 and 2.

The average values are, in general, nonadditive (U112
ÞU11U2). But even if additivity ofU is imposed, the po-
tential F remains nonadditive. The correction term depen
on the microscopic details of the two HamiltoniansH1 and
H2.

This lack of additivity does not allow us to define a
equivalence relation of ‘‘mutual’’ equilibrium. Consider tha
two ~noninteracting! systems 1 and 2 are, independently,
equilibrium with a bath characterized by parametersb andg.
One cannot ensure that the composite system 112 is in equi-
librium with the bath.
3-3
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VI. STABILITY CRITERION

In standard thermodynamics, the stability criteri
2]U/]b.0 is derived from the condition of maximum en
tropy. The derivation@10# considers a partition of an isolate
system into any two subsystems. By allowing the two s
systems to alter their energies at fixed total energy, one
analyze the entropy change when the system is~virtually!
displaced out of equilibrium. The condition of the maximu
total entropy allows to deduce that the equilibrium state c
responds to a state with homogeneousb ~equilibrium condi-
tion! and with 2]U/]b.0 ~stability condition!. For the
derivation, nevertheless, additivity of the entropy of the t
subsystems must be used.

Within our new formalism, an additivity assumption ca
not be used. Therefore it is not straightforward to establis
stability criterion. Although we cannot give a rigorous proo
in this section we provide some evidences that the same
terion (2]U/]b.0) must hold.

First of all, it is interesting to remark that the requireme
of Eq. ~9! that allows us to findU can be rewritten as an
extremal condition. Consider the definition of an~dimension-
less! ‘‘out-of-equilibrium’’ potential:

C~b,g,U !5 ln Z. ~26!

Note that here we are consideringb, g, andU as indepen-
dent variables.U shall not be regarded as the internal ene
but as a parameter that allows virtual displacements ou
equilibrium. It can be checked that the self-consistent eq
tion ~9! can then be written as

S ]C

]U D
b,g

50. ~27!

Therefore, only the extrema ofC correspond to equilibrium
solutions:U5Ũ(b,g). By substituting inC one gets the
equilibrium potential:

F~b,g!5C„b,g,Ũ~b,g!…. ~28!

Second, from Eq.~8! note that ifg.0 andU→6`, then
ZG→0 and thereforeC→2`.

We can use this out-of-equilibrium potential to define
stability criterion. It is straightforward to compute its seco
derivative:

S ]2C

]U2 D
b,g

52g~2gW21!. ~29!

Note that the positivity ofC in Eq. ~20! would guarantee tha
this second derivative ofC is negative and therefore th
state of equilibrium corresponds to maxima ofC(b,g,U)
with respect toU displacements. Although, contrary to wh
happens in the standard canonical ensemble, the positivi
W does not ensure the sign of2]U/]b in general, at leas
we can derive that for small and positive values ofg
05611
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0,2S ]U

]b D
g

⇒S ]2C

]U2 D
b,g

,0. ~30!

Thus we suggest that this is the stability criterion to be u
within the EGE, and we will use it in Sec. VIII for the analy
sis of some examples.

VII. COMPARISON WITH q-EXPONENTIAL
DISTRIBUTIONS

q-exponential distributions are the central predictions
the generalized statistical mechanics proposed by Tsallis@5#.
These distributions have been considered as model distr
tions to describe various complex systems at their station
states@12–14#. The general form of such distributions
given byp(x);eq(x), where theq exponential is defined a
eq(x)5@11(12q)x#1/(12q). This function goes to the usua
exp(x) function forq→1. For definiteness, we restrict to th
range 0,q,1.

In this section, we compare theq-exponential distribu-
tions with the equilibrium distributions of the EGE. But firs
we show how to derive theq-exponential distributions by
generalizing the canonical ensemble approach, along
lines of Sec. II. We define a parameter which is, in genera
function of the energyE2 of the reservoir

b~E2!5
dS2

dE2
. ~31!

At equilibrium, it attains the value given by Eq.~5!. We
impose thatb(E2) satisfies

d

dE2
S 1

b~E2! D5Q, ~32!

whereQ is a positive valued constant. From Eqs.~32! and
~31!, we obtain

d

dE2
b~E2!5

d2S2

dE2
2

52Qb2~E2!. ~33!

In general, for all integer values ofn

dnS2

dE2
n

5~n21!! ~2Q!n21bn~E2!. ~34!

Now unlike in Eq. ~4!, if in the expansion ofS(E2E1)
around the equilibrium value (E2U) we retain derivatives
of S2 up to all orders, then we have

S2~E2E1!5S2~E2U !1 (
n51

`
1

n!

dnS2

dE2
n U

E2U

~U2E1!n.

~35!

On applying Eq.~34! for the case of equilibrium, we can
write
3-4
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S2~E2E1!5S2~E2U !1 (
n51

`
1

n
~2Q!n21bn~U2E1!n,

~36!

where note thatb is given by its value at equilibrium. The
equilibrium probability distribution is then given from~3! as

p~E1!;expF (
n51

`
1

n
~2Q!n21bn~U2E1!nG . ~37!

To compare Eq.~37! with the q-exponential distribution
given by

pq~E1!;eq@b~U2E1!#5@11~12q!b~U2E1!#1/(12q),
~38!

we rewrite theq exponential as

eq@b~U2E1!#5expF ln@11~12q!b~U2E1!#

~12q! G , ~39!

and expand the ln function using the series ln@11x#5x
2x2/21x3/32x4/41•••, provided that21,x<1. Thus we
can write

eq@b~U2E1!#5expF (
n51

`
1

n
$2~12q!%n21bn~U2E1!nG ,

~40!

for 21,(12q)b(U2E1)<1. Thereby, on identifyingQ
5(12q) we may say that the general equilibrium distrib
tion of Eq.~37! based on assumptions~31! and~32!, is iden-
tical to a q-exponential distribution. Assuming that the re
evantq values are quite close to unity, we may keep ter
only up to second order as done in Eq.~4!. Then the equi-
librium q distribution for system 1 being in microstatei of
energye i can be written as

pq~e i !5
1

Zq
expF2be i2

1

2
~12q!b2~e i2U !2G , ~41!

whereZq is the normalization constant.
On the other hand, for the case of EGE, instead of fix

the derivative ofb21 @Eq. ~32!#, we fix the derivative ofb as
follows:

d

dE2
b~E2!522g, ~42!

whereg is independent ofE2. This ensures that the highe
order (n.2) derivatives ofS2 vanish. On comparing Eqs
~41! and ~7!, we note that (12q) plays the role analogou
to g.

It may be remarked that if we identify parameterb(E2)
51/T(E2) as the inverse temperature, then Eq.~32! implies
that the heat capacity of the reservoirC25dE2 /dT5Q21.
Recently, theq-exponential distributions have been discuss
in the context of a reservoir with finite heat capacity@6#. On
the other hand, following Gibbs’ approach to the canoni
05611
s

g

d

l

ensemble, but instead using theq-generalized Boltzmann en
tropy, q-exponential distributions were derived in Ref.@15#.

VIII. APPLICATION TO A SYSTEM
OF INDEPENDENT SPINS

A. Single spin

As a first example of the EGE, we apply our formalism
the problem of a system with only two energy levels. Let
consider a single spins561 in the presence of a consta
external magnetic fieldB. The Hamiltonian of the system
reads

H52Bs. ~43!

The partition function is given by

ZG5ebBe2g(2B2U)2
1e2bBe2g(B2U)2

, ~44!

where the mean energyU is the solution of the following
self-consistent equation:

U52BebBe2g(2B2U)2
1Be2bBe2g(B2U)2

. ~45!

The dependence onB can be easily overcome by defining th
reduced units~dimensionless quantities!:

U* 5U/B, b* 5bB, g* 5gB2. ~46!

Thus, Eq.~45! becomes

U* 5e2b* e2g* (12U* )2
2eb* e2g* (11U* )2

. ~47!

The numerical solution of this equation is plotted in Fig.
The behavior ofU* as a function of 1/b* is shown for dif-
ferent values ofg* . For g*50, one recovers the behavio
U* 5tanh(b* ) corresponding to the case of a system in co
tact with an infinite reservoir. Forg*Þ0, U* is smaller, in-
dicating that it is more difficult to disorder the system b
decreasingb* . It is interesting to note that forg*.0.5, there
is a change in the behavior atb*→0. Above this value ofg* ,
the system is not able to disorder completely anymore
always keeps a certain magnetization (m5^s&

-1

-0.8

-0.6

-0.4

-0.2

0

0 50 100 150 200 250 300

U
*

1/β*

γ*=0.0

γ*=0.2
γ*=0.4

γ*=0.5

γ*=0.6

γ*=0.7

FIG. 1. Behavior of the mean reduced energyU* as a function
of 1/b* for several values ofg* in a system of a single spin.
3-5
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52U* ). This can be regarded as a ‘‘phase transition’’ th
occurs atb*50. This change in the behavior occuring
g*.0.5 can also be seen by plotting the entropySas a func-
tion of 1/b* for different values ofg* . This is shown in Fig.
2. Forg*,0.5 the entropy tends to ln 2 forb*→0, whereas it
tends to a lower value forg*.0.5.

B. Two spins

As a second step, it is also very instructive to study
system of two independent spins. This will illustrate the no
extensive behavior of the solution. In this case, the numer
solution of the self-consistent equation~9! for the mean en-
ergy renders the behavior shown in Fig. 3. For the value
b* and g* for which more than one solutions are possib
we have used the stability criterion proposed in Sec. VI
decide which is the ‘‘equilibrium’’ solution. As can be see
for g*.0.49 a discontinuity occurs associated with a sudd
loss of order in the system. Although the system is far fr
the thermodynamic limit, this change shares many simil
ties with a phase transition. Figure 4 displays the behavio
the corresponding energy fluctuations. It can be seen
W* 5(^H2&2U2)/B2 exhibits a cusp at the transition fo

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100 120 140

S

1/β*

γ*=0.0

γ*=0.2 γ*=0.4 γ*=0.5

γ*=0.6

γ*=0.7

FIG. 2. Behavior of the entropyS as a function of 1/b* for
several values ofg* in a system of a single spin.

-2

-1.5

-1

-0.5

0

0 0.5 1 1.5 2 2.5 3 3.5 4

U
*

1/β*

γ*=0.0 γ*=0.2 γ*=0.4 γ*=0.5

γ*=0.6

γ*=0.7

γ*=0.5

γ*=0.6

γ*=0.7

FIG. 3. Behavior of the mean energyU* as a function of 1/b*
for several values ofg* in a system of two independent spins.
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g*.0.49. For larger values ofg* , the fluctuations exhibit a
discontinuity. The discontinuities are associated with fir
order phase transitions that display metastable behavior
an example, in Fig. 5, we show the detailed behavior ofU*
as a function of 1/b* for g*50.6. In the range
2.42,1/b*,2.86, the numerical analysis of the se
consistent equation renders three solutions.

By analyzing the behavior of the potentia
C(b* ,g* ,U* ), shown in Fig. 6, it is easy to verify that two
of such solutions are stable~correspond to local maxima o
C! whereas one is unstable~corresponds to a local minimum
of C and is not plotted in Fig. 5!. The equilibrium transition
jump at 1/b*.2.832 is determined by the equality of the tw
maxima ofC.

For the system of two spins, therefore, we can plo
b* -g* phase diagram, shown in Fig. 7. The line of first-ord
phase transitions ends in a ‘‘critical’’ point atb*.0.353 and
g*.0.49. This point is characterized by the conditio
1/W* 52g* and thus, according to Eq.~19!, corresponds to
a divergence of C but not to a divergence of the
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FIG. 4. Behavior of the energy fluctuations as a function of 1/b*
for several values ofg* in a system of two independent spins.
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FIG. 5. Behavior ofU* as a function of 1/b* for a system of
two spins withg*50.6. The continuous line represents the equil
rium solution ~with maximum C! and the dashed lines represe
metastable solutions which correspond to local maxima.
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fluctuationsW* , which can never diverge for such a syste
with a finite number of bounded energy levels.

C. Several spins

We have also performed a numerical study of syste
with larger number of independent spins in the presence
an external field. An example is shown in Fig. 8, correspo
ing to a system with four spins~16 energy levels!. A se-
quence of two consecutive phase transitions can be obse
As an interesting remark we want to note that in the case
N ‘‘noninteracting’’ spinssk (k51, . . . ,N) in the presence
of an external field, long-range forces will appear due to
finite size of the bath. This can be easily seen by writing
probabilitiespi for the microstates (i 51, . . . ,2N) of such a
system:

pi5expFb* (
k51

N

sk2g* S (
k51

N

sk2U* D 2G . ~48!
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* ,U

* )
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γ*=0.6

β*=0.29

β*=0.30

β*=0.35

β*=0.41

β*=0.42

FIG. 6. Behavior of the potentialC(b* ,g* ,u* ) for different
values of 1/b* for a system of two spins withg* 50.6. The equi-
librium value ofU* corresponds to the maximum of the potent
C.
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FIG. 7. Phase diagram for a system of two spins. The cont
ous line represents first-order transitions whereas discontinu
lines indicate the metastability limits.
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Note that the development of the squared term in the ex
nent will lead to terms2g* sksj which correspond to anti-
ferromagnetic interactions among all spin pairs. A more
tailed study of these examples is out of the scope of
paper.

IX. SUMMARY

We have presented the EGE as a generalization of
standard canonical ensemble. The ensemble statistics
been derived by following two methods: first by consideri
a system in contact with a finite bath and second from
maximum statistical entropy principle by fixing the know
edge of both the mean energy and the energy fluctuati
The obtained probability law depends on two parameterb
andg which are properties of the bath. Thermodynamic
lations have been derived and a possible stability criter
has been suggested. Nevertheless this point as well as
possibility for establishing a mutual equilibrium criterio
will need further analysis in future works. We have also p
sented an application of the EGE formalism to the analy
of a system of one spin and two independent spins. Am
other interesting results, the most remarkable one is the
sibility for occurrence of a critical point or first-order phas
transitions induced by the finite size of the reservoir. Furth
comparisons of this new ensemble formalism with alter
tive extensions of statistical mechanics proposed for
study of nanosystems@16–18# or for other nonextensive sys
tems are interesting problems for research.
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