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Statistical mechanics in the extended Gaussian ensemble
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The extended Gaussian ensemt&E) is introduced as a generalization of the canonical ensemble. This
ensemble is a further extension of the Gaussian ensemble introduced by Hethdrngmn Temp. Phys56,
145(1987]. The statistical mechanical formalism is derived both from the analysis of the system attached to
a finite reservoir and from the maximum statistical entropy principle. The probability of each microstate
depends on two parametgBsand y which allow one to fix, independently, the mean energy of the system and
the energy fluctuations, respectively. We establish the Legendre transform structure for the generalized ther-
modynamic potential and propose a stability criterion. We also compare the EGE probability distribution with
the g-exponential distribution. As an example, an application to a system with few independent spins is
presented.
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[. INTRODUCTION semble and will be called the extended Gaussian ensemble
(EGBE). A similar ensemble was already developed, in a more
The development of statistical mechanics based on erfestricted framework, by Hetheringtd@]. The author con-
semble theory is founded on the postulate of “eqaigiriori ~ Sidered that the sample system was in contact with a finite
probabilities,” which is assumed to apply to all microstates €S€Voir with size dependent properties. The so-called

consistent with the given macrostate of an isolated Syste’,Eaussian ensemble was introduced so that it is equivalent to

[1]. The corresponding statistical ensemble is the so-callel's, canonical ensemble in the limit of large systems, except
N the energy range of a first-order transition. Interestingly, it

ggg;:eamggcglll er:].:, :ggﬁi'cglies;?;i?éit'\éiCsﬁl S;zmelr?eg; e‘rﬂe'nables a smqoth interpolation bgtwqen the microcanonical
Y , ) . and the canonical ensembles. Taking into account these fea-
volume_\/, magnetizatiorM, etc., fixed. For CONVENIENCE IN ;105 Challa and HetheringtdB,4] showed the interest of
calculations, other ensembles are used which invariably sURpis ensemble for Monte Carlo simulation studies of phase
pose the existence of a subsidiary system or reservoir in CORansitions. They demonstrated a significant reduction in
tact with the actual system. For instance, in the canonicatomputer time(compared to standard simulations in the ca-
ensemble the walls of the system permit an exchange of efiyonical ensemble and its adequacy for distinguishing
ergy with the reservoir while in the grand canonical en-second-order from first-order transitions. Compared to the
semble, both energy and matter can be exchanged. In gegGE introduced in the present paper, the main difference
eral, the different ensembles are constructed by allowing onarises from the fact that in the Gaussian ensemble the sample
or more mechanical variables to fluctuate. The exchange aind the reservoir are assumed to be statistically independent
each of these variables is controlled by a parameter which ighich implies the additivity of the corresponding entropies.
a characteristic of the reservoir. For instance, in the case ofhis is not assumed in our formalism. The consequences are
the canonical ensemble, this parameter is precisely the tenimportant and will be discussed in depth in this work.
perature of the reservoir and determines the mean energy of The present formalism can be considered as an alternative
the system. Actually, this is adequate when the reservoir is £ the statistical mechanics based on nonadditive generalized
very large system that can exchange arbitrary amounts dintropies. Actually the study of such generalized entropies
energy, without modification of its intensive properties. InNas generated a lot of interest in the past 15 years. The mo-
practical situations, this is not always the case. Howevertivation for the so-called Tsallis statistical mechanics has
very few studies have been devoted to analyze the cons@-een to extend the_ standard BoItzmann-Glbbs fr_amework to
quences of possible deviations from these ideal reservolfclude nonextensive systerfts]. Among different interpre-
e B s
In this paper, we develop the stgt|st|clal' mechamcs of Finite reservoil 6,7]. Although a large number of papers have
system that can exchange energy with a finite reservoir Cha[ieen published, the physical meaning of many related issues
acterized by two parameters:andy. These parameters con- o o' gnen to discussiof8,9]. The EGE formalism that we
trol independently the mean energy of the system and it qhose in this paper provides a clear and consistent frame-
energy fluctuations, respectively. The corresponding statistiy,ork for the statistical mechanics with a finite reservoir.
cal ensemble represents a generalization of the canonical en- Tpe paper is organized as follows: in Secs. Il and IlI, the
EGE is founded from the analysis of a contact with a finite
reservoir and from the maximum statistical entropy prin-

*Electronic address: rjohal@ecm.ub.es ciple, respectively. In Sec. IV, the main thermodynamic rela-
"Electronic address: toni@ecm.ub.es tions are derived. In Sec. V, we highlight the nonadditive
*Electronic address: eduard@ecm.ub.es nature of the thermodynamic formalism. In Sec. VI, a stabil-
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ity criterion is proposed. In Sec. VII, the equilibrium distri- in Eq.(4). However, in the present paper, we consider a more
butions of the EGE are compared with tlgeexponential general finite reservoir for which#0. Thus in this EGE, the
distributions. In Sec. VIII, we present an example of appli-reservoir is characterized by the pair of paramefeend y.
cation to a system of independent spins. Finally, in Sec. IXThe thermodynamic meaning of these parameters will be

we summarize and conclude. clarified in the following sections. To explicitly highlight the
effects of this modification and also for the sake of simplic-
Il. CONTACT WITH A FINITE RESERVOIR ity, we assume that the cubic and higher-order terms vanish.
Then substituting Eq4) in Eq. (3) and denoting the energies
Let us consider a systefthat we will call the samplein  of the microstates of the sample ky (i=1,... M), we

contact with a reservoir. Let us call the energy of the samplntain

E, and the energy of the reservdir,. The sample and the

reservoir together form an isolated system so tRhatE; 1 )

+E, is constant. Let us also defifig,(E,) as the number of Pi :ZGXF[ —Be—v(e—U)7], (7)
microstates of the reservoir. Following Callgl0], the prob-

ability that the system 1 is in a certain microstate with energywhere the normalization constang is given by

E, is given by M

O (E-Ey Zg=2, ext—Be=(g—=U)’]. ®

P1(Eq = 0,,E) (1 =1

The subscripG only indicates the “Gaussian” form of the
where(), , ,(E) is the total number of states available for the probabilities. Note that) is the mean energy and must be
set 1+2. (Note that we do not assume thflt; ., can be optained self-consistently from the following equation:
factorized as a produd?;(),.) Let us define the entropy of

. M
the reservoir as

UZs=2, eiexi] —Bei—y(e—U)?]. )
S2(E2)=In Q5(Ep). 2 =1

(Throughout the paper we choose Boltzmann's constgnt
=1, so that the entropy is dimensionlgsEherefore

Equations(7), (8), and(9) reduce to the standard canonical
ensemble definitions whep=0. Therefore, it is natural to
relate the parametey with the finite size of the reservoir.

eS2E-Ey)
pi(E))= =——=. (3 1l MAXIMUM STATISTICAL ENTROPY PRINCIPLE

Q1:2(E)

In this section, we derive the probability law of E()
The energy of the sample will, in general, fluctuate. Let usrom different arguments. This leads to a better understand-
call U its mean(equilibrium) value. We can develof,(E  ing of the parameterg and y as parameters characterizing

—E;) around the equilibrium valug—U as the “equilibrium” distribution of the sample. To derive the
ds, probability distribution from the maximum statistical entropy
E—E)=S,(E—U)+ —2 _E principle, we maximize the standard Gibbs-Boltzmann-
S 1)=S(E-U) dE, EiU(U v Shannon entropy given by
M
1 d?
+—|—522 (U-E;)?+0O(U-E))°. Se=—2, pilnp;, (10
2! dES E_U i=1

(4)  subject to the constraints of normalization of the probability,
the given mean value of the energy, and the fixed value of

The derivatives in the right-hand side of this expression ar¢he fluctuations, respectively, as
guantities which depend only on the reservoir. We define

M
2 pizlv (ll)
9% =p 6) =1
dE,|. )
and <6i>5241 €pi=U, (12
d’s, _ 5 M
as|_ 7" © (6=V))=3, (6=U)%p=W. (13

The standard canonical ensemble is characterized by an infFhen the maximization procedure is done by introducing the
nite reservoir with constanB (independent oE,), which  Lagrange multipliers\, 8, and y for the respective con-
implies y=0 and there is no term beyond the first-order termstraints, and maximizing the following functionAt
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which resembles in form a diffusion equation.
L=- Pi'”pi—)\(z pi_l) —,3< > fipi—U) The entropySs as given by Eq(10) is the inverse Leg-
' ' ' endre transform ofb(8,y), and can be expressed as

—y(Zi (Ei_U)Zpi_W)' (14) Se(U,W)=BU + yW+d, (22)

By requiring the condition wherebyS; is a function of the specified values of the con-

or straints, i.e.U andW. Therefore we have the following ther-

5_0, (15) modynamic relations:

|

it is easy to see that the optimum form of the probability 39S

distribution is given by the expression in Ed). Thereforeg (W) =B (23
and vy, within this context, are simply Lagrange multipliers W

that allow to fix, self-consistently, a mean value of the energy

U=(¢) and a specific value of the varianc&V 9Sg

=((&=V)?). w), =Y 9

IV. THERMODYNAMIC RELATIONS

. . . . . V. NONADDITIVITY
We define a(dimensionless thermodynamic potential

d(B,y) as We remark that although the thermodynamics of a system
in the EGE is well defined by the equations in the preceding
O(B,y)=InZs. (16)  section, it is not straightforward to establish a mutual equi-

) o . ) librium condition for two different systems that would allow

By differentiating Eq.(8), it can be straightforwardly ob- s to establish a zeroth laver, equivalently, an intensive

tained that temperaturg[11]. This problem is due to the nonadditive
P character of the potentiab(3,y). Let us consider two sys-
_(_) —U(B,y), (17) tems 1 and 2 with Hamiltoniartd; andH,. By applying the
B y rules derived in the preceding sections independently to the

two systems, one can derive the thermodynamic potentials

[} ®,(B,y) and ®,(B,y) as well as the mean energies
oy =W(B,7). (18 Ul(_ﬁ,y) andUz(ﬂ,y_). One can _then try to sol\_/e the com-
B posite system 12 with HamiltonianH;+H,. It is easy to
The second derivative renders verify that the new potentiab . ,(3,y) satisfies
_(¥®>:_@g): 1 ag  PraBN=CUBN B
9p? y B Y W (B, y)—2y _|n<ey[(H1+H2*U1+2)2*(H1*U1)2*(H2*U2)2]>,
which represents a generalization of the standard formula for (25)
energy fluctuations in the canonical ensemble. It is natural to
define the extended heat capacity as whereU,, , is the mean energy of the composite system.
) Note thatU,,, as well as the average indicated by the an-
c=—p2 ﬂ _ B*W (20) gular brackets are computed with the probability distribution
B y 1-2yW° corresponding to the composite systerm2lwhich, in gen-

eral, cannot be written as a product of probability distribu-
This equation is the same that was already derived in Refions for systems 1 and 2.
[4]. Note that, contrary to what happens in the standard ca- The average values are, in general, nonadditig (
nonical ensemble, the positivity of the fluctuationsdoes  #U;+U,). But even if additivity ofU is imposed, the po-
not guarantee the positivity @f. tential @ remains nonadditive. The correction term depends
For y—0, it is seen that relationd7) and(19) go to the  on the microscopic details of the two Hamiltoniadg and
corresponding relations for the case of canonical ensembléd .
Also in this limit, from Egs.(18) and (19 we get an inter- This lack of additivity does not allow us to define an
esting relation given by equivalence relation of “mutual” equilibrium. Consider that
two (noninteracting systems 1 and 2 are, independently, in

- [oD PP equilibrium with a bath characterized by paramej@end vy.
lim 9y =\ 2 (21)  One cannot ensure that the composite syste i in equi-
o0l Vg N OB, librium with the bath.,
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_(92\1/) <0 (30
5 .
oV B,

VI. STABILITY CRITERION U

_)2
B/

Thus we suggest that this is the stability criterion to be used
‘within the EGE, and we will use it in Sec. VIII for the analy-
s of some examples.

o< —

In standard thermodynamics, the stability criterion
—dU/dB>0 is derived from the condition of maximum en-
tropy. The derivation10] considers a partition of an isolated
system into any two subsystems. By allowing the two sub
systems to alter their energies at fixed total energy, one ¢
analyze the entropy change when the systenfviitually)
displaced out of equilibrium. The condition of the maximum
total entropy allows to deduce that the equilibrium state cor- VIl. COMPARISON WITH g-EXPONENTIAL
responds to a state with homogeneg@ugquilibrium condi- DISTRIBUTIONS

tion) and with —dU/9p>0 (stability condition. For the g-exponential distributions are the central predictions of

derivation, nevertheless, additivity of the entropy of the twoie generalized statistical mechanics proposed by T$8llis

subsystems must be used. o . These distributions have been considered as model distribu-
Within our new formalism, an additivity assumption can- tions to describe various complex systems at their stationary

not be used. Therefore it is not straightforward to establish 8tates[12-14. The general form of such distributions is

stability criterion. Although we cannot give a rigorous proof, given byp(x)~e,(x), where theg exponential is defined as

in this section we provide some evidences that the same cré-q(x) =[1+(1—q)x]¥2~9. This function goes to the usual

terio'n (= &U/aﬁ}Q) must' hold. _ exp) function forq— 1. For definiteness, we restrict to the
First of all, it is interesting to remark that the requirement gnge o< q<1.

of Eq. (9) that allows us to findJ can be rewritten as an In this section, we compare thgexponential distribu-
extremal condition. Consider the definition of @fimension- tjons with the equilibrium distributions of the EGE. But first,
less “out-of-equilibrium” potential: we show how to derive the-exponential distributions by
generalizing the canonical ensemble approach, along the
¥(B,v,U)=InZ. (26) lines of Sec. Il. We define a parameter which is, in general, a

function of the energ¥, of the reservoir
Note that here we are considerily y, andU as indepen-

dent variablesU shall not be regarded as the internal energy as,
but as a parameter that allows virtual displacements out of B(Ez)= d_E2 (31)
equilibrium. It can be checked that the self-consistent equa-
tion (9) can then be written as At equilibrium, it attains the value given by E@5). We
impose thaiB(E,) satisfies
(a\If 0 @7
aul T d 1
B. —— =Q, 32
' a5, | B(E)| 2 32

Therefore, only the extrema &f correspond to equilibrium

solutions:U=U(B,y). By substituting in¥ one gets the
equilibrium potential:

whereQ is a positive valued constant. From E@32) and
(31), we obtain

~ d d?s,
Q(B,y)=Y(B,v,U(B,7). (28) —=B(Ez)=—— =—QB*E,). (33
dE; dE;
Second, from Eq(8) note that ify>0 andU— *c, then .
Zs—0 and thereforel — —oo. In general, for all integer values of
We can use this out-of-equilibrium potential to define a .
stability criterion. It is straightforward to compute its second d"s, -
derivative: ;= (=DI(=Q)" 'B"(E). (34)
dE;
I*W B Now unlike in Eq. (4), if in the expansion ofS(E—E;)
U2 =2y(2yW-1). (29 around the equilibrium valueE—U) we retain derivatives
By of S, up to all orders, then we have
Note that the positivity o€ in Eq. (20) would guarantee that “ 1 dns,
this second derivative o' is negative and therefore the S5, (E—E;)=S,(E—U)+ 2 — (U—Ep"
state of equilibrium corresponds to maxima &{3,vy,U) n=1Nn! dEj EU
with respect tdJ displacements. Although, contrary to what (35)

happens in the standard canonical ensemble, the positivity of
W does not ensure the sign efdU/dB in general, at least On applying Eq.(34) for the case of equilibrium, we can
we can derive that for small and positive valuesyof write
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o1
SAE-E)=S(E-U)+ 2 ~(~Q"*BU-EY"
(36

where note thap is given by its value at equilibrium. The
equilibrium probability distribution is then given fro3) as

[’

p)

n=1

1
P(E1)~exr{ ﬁ(—Q)”flﬁ”(U—El)”- (37

To compare EQ.(37) with the g-exponential distribution
given by

Po(E1)~eq BU—Ep)]=[1+(1-q)B(U—E)]/"9,
(38)
we rewrite theq exponential as
In[1+(1-q)B(U—Ey)]
(1-a)
and expand the In function using the serie§ltx]=x

—x%2+x313—x*/4+ - - -, provided that- 1<x<1. Thus we
can write

eq[,B(U_El)]:eX[{ } (39

1
eqlB(U— El)]=exp[ n; ﬁ{—(l—q)}“‘lﬁ”(U —El)”},
(40)

for —1<(1—-q)B(U—E;)<1. Thereby, on identifyingQ
=(1-q) we may say that the general equilibrium distribu-
tion of Eq.(37) based on assumptioi3l) and(32), is iden-
tical to ag-exponential distribution. Assuming that the rel-

evantq values are quite close to unity, we may keep terms

only up to second order as done in E4). Then the equi-
librium q distribution for system 1 being in microstaiteof
energye; can be written as

1 1 2 2
Pa(€)= 5-exn —Bei—5(1- QB &~ V)7, (4D

q

whereZq is the normalization constant.

On the other hand, for the case of EGE, instead of fixing

the derivative of3 ™1 [Eq. (32)], we fix the derivative of3 as
follows:

d
d—EZB(Ez)I—Z% (42)

where vy is independent oE,. This ensures that the higher-
order (>2) derivatives ofS, vanish. On comparing Egs.
(41) and (7), we note that (3q) plays the role analogous
to .

It may be remarked that if we identify paramef@{E,)
=1/T(E,) as the inverse temperature, then E2) implies
that the heat capacity of the reserv@s=dE,/dT=Q 1.

PHYSICAL REVIEW E68, 056113 (2003
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FIG. 1. Behavior of the mean reduced enelgjl/ as a function
of 1/8* for several values of* in a system of a single spin.

ensemble, but instead using ttygeneralized Boltzmann en-
tropy, g-exponential distributions were derived in REE5].

VIIl. APPLICATION TO A SYSTEM
OF INDEPENDENT SPINS

A. Single spin

As a first example of the EGE, we apply our formalism to
the problem of a system with only two energy levels. Let us
consider a single spis=*+1 in the presence of a constant
external magnetic fiel. The Hamiltonian of the system
reads

H=—Bs. (43
The partition function is given by
Zo—efBe ("B-U)’4 g~ BBg1(B-U)? (44)

where the mean energy is the solution of the following
self-consistent equation:

U=—BefBe 7("B-U)  gg B 7(B-U)?,

(49)

The dependence ddican be easily overcome by defining the
reduced unitgdimensionless quantitigs

U*=U/B, pB*=pBB, y*=9yB>2 (46)
Thus, Eq.(45) becomes
U*:e_ﬁ*e_'y*(l_u*)z_eB*e_V*(1+U*)2_ (47)

The numerical solution of this equation is plotted in Fig. 1.
The behavior oU* as a function of 18* is shown for dif-
ferent values ofy*. For y*=0, one recovers the behavior
U* =tanh(8*) corresponding to the case of a system in con-
tact with an infinite reservoir. Foy* #0, U* is smaller, in-
dicating that it is more difficult to disorder the system by
decreasings*. It is interesting to note that foy* =0.5, there

Recently, theg-exponential distributions have been discusseds a change in the behavior gt —0. Above this value of/*,

in the context of a reservoir with finite heat capagigy. On

the other hand, following Gibbs’ approach to the canonicaklways

the system is not able to disorder completely anymore and
keeps a certain magnetization m=(s)
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FIG. 2. Behavior of the entropy as a function of 18* for

FIG. 4. Behavior of the energy fluctuations as a function g#1/

several values of* in a system of a single spin. for several values of* in a system of two independent spins.
=—U%*). This can be regarded as a “phase transition” that
occurs atB*=0. This change in the behavior occuring at
v*=0.5 can also be seen by plotting the entr&gs a func-
tion of 1/8* for different values ofy*. This is shown in Fig.

2. Fory*<0.5 the entropy tends to In 2 fg* —0, whereas it
tends to a lower value foy* >0.5.

v*=0.49. For larger values of*, the fluctuations exhibit a
discontinuity. The discontinuities are associated with first-
order phase transitions that display metastable behavior. As
an example, in Fig. 5, we show the detailed behaviod 6f
as a function of 18 for 7*=0.6. In the range
2.42<1/B*<2.86, the numerical analysis of the self-
consistent equation renders three solutions.

By analyzing the behavior of the potential

As a second step, it is also very instructive to study a¥(8*,y*,U*), shown in Fig. 6, it is easy to verify that two
system of two independent spins. This will illustrate the non-Of such solutions are stableorrespond to local maxima of
extensive behavior of the solution. In this case, the numerical) Whereas one is unstableorresponds to a local minimum
solution of the self-consistent equati¢® for the mean en- Of ¥ and is not plotted in Fig. )5 The equilibrium transition
ergy renders the behavior shown in Fig. 3. For the values oUmp at 18*=2.832 is determined by the equality of the two
B* and y* for which more than one solutions are possible,maxima of¥.
we have used the stability criterion proposed in Sec. VI to For the system of two spins, therefore, we can plot a
decide which is the “equilibrium” solution. As can be seen, 8*-¥* phase diagram, shown in Fig. 7. The line of first-order
for y*>0.49 a discontinuity occurs associated with a suddePhase transitions ends in a “critical” point @t ~0.353 and
loss of order in the system. Although the system is far fromY"=0.49. This point is characterized by the condition
the thermodynamic limit, this change shares many similaril/W* =2y* and thus, according to E¢19), corresponds to
ties with a phase transition. Figure 4 displays the behavior of divergence ofC but not to a divergence of the
the corresponding energy fluctuations. It can be seen that
W* = ((H?)—U?)/B? exhibits a cusp at the transition for

B. Two spins

0 —
=0.6
021 e
0 04} ]
06
05} -0.8
o al
12t
] 1 1.4 ¢
16 ¢ ,
/
15| -1.8 ¢ /
-2 I L L L L L
0 05 1 15 2 25 3 35 4
2 vy
0

FIG. 5. Behavior ofu* as a function of 18* for a system of
two spins withy* =0.6. The continuous line represents the equilib-

FIG. 3. Behavior of the mean energy* as a function of 18*
for several values of* in a system of two independent spins.

rium solution (with maximum W) and the dashed lines represent
metastable solutions which correspond to local maxima.
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0.95 ‘ ‘ = 0

U iy

FIG. 6. Behavior of the potential’(8*,y*,u*) for different FIG. 8. Behavior of the mean ener@yy* as a function of 18*
values of 18* for a system of two spins with* =0.6. The equi- for several values of* in a system of four independent spins.

librium value of U* corresponds to the maximum of the potential
v, Note that the development of the squared term in the expo-

nent will lead to terms— y*s,s; which correspond to anti-
ferromagnetic interactions among all spin pairs. A more de-
tailed study of these examples is out of the scope of this

paper.

fluctuationsW*, which can never diverge for such a system
with a finite number of bounded energy levels.

C. Several spins

We have also performed a numerical study of systems IX. SUMMARY

with larger number of independent spins in the presence of

an external field. An example is shown in Fig. 8, correspond- We have presented the EGE as a generalization of the

ing to a system with four spin§l6 energy levels A se-  standard canonical ensemble. The ensemble statistics have

guence of two consecutive phase transitions can be observesken derived by following two methods: first by considering

As an interesting remark we want to note that in the case o& system in contact with a finite bath and second from the

N “noninteracting” spinss, (k=1,... N) in the presence maximum statistical entropy principle by fixing the knowl-

of an external field, long-range forces will appear due to theedge of both the mean energy and the energy fluctuations.

finite size of the bath. This can be easily seen by writing theThe obtained probability law depends on two paramegers

probabilitiesp; for the microstatesiE 1, . ..,2Y) of such a  andy which are properties of the bath. Thermodynamic re-

system: lations have been derived and a possible stability criterion
has been suggested. Nevertheless this point as well as the
possibility for establishing a mutual equilibrium criterion

N N 2 . -
_ . s . will need further analysis in future works. We have also pre-
p,—ex;{ﬁ ,Zfl Sk (,Z’l S U ) } 489 sented an application of the EGE formalism to the analysis
of a system of one spin and two independent spins. Among
3 ‘ ‘ — ‘ other interesting results, the most remarkable one is the pos-
sibility for occurrence of a critical point or first-order phase
257 1 transitions induced by the finite size of the reservoir. Further,
comparisons of this new ensemble formalism with alterna-
27 1 tive extensions of statistical mechanics proposed for the
o 15| | study of nanosystenid6—18 or for other nonextensive sys-
= tems are interesting problems for research.
1 L
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